Wheat and Rice Growth Stages and Fertilization Regimes Alter Soil Bacterial Community Structure, But Not Diversity
نویسندگان
چکیده
Maintaining soil fertility and the microbial communities that determine fertility is critical to sustainable agricultural strategies, and the use of different organic fertilizer (OF) regimes represents an important practice in attempts to preserve soil quality. However, little is known about the dynamic response of bacterial communities to fertilization regimes across crop growth stages. In this study, we examined microbial community structure and diversity across eight representative growth stages of wheat-rice rotation under four different fertilization treatments: no nitrogen fertilizer (NNF), chemical fertilizer (CF), organic-inorganic mixed fertilizer (OIMF), and OF. Quantitative PCR (QPCR) and high-throughput sequencing of bacterial 16S rRNA gene fragments revealed that growth stage as the best predictor of bacterial community abundance and structure. Additionally, bacterial community compositions differed between wheat and rice rotations. Relative to soils under wheat rotation, soils under rice rotation contained higher relative abundances (RA) of anaerobic and mesophilic microbes and lower RA of aerophilic microbes. With respect to fertilization regime, NNF plots had a higher abundance of nitrogen-fixing Cyanobacteria. OIMF had a lower abundance of ammonia-oxidizing Thaumarchaeota compared with CF. Application of chemical fertilizers (CF and OIMF treatments) significantly increased the abundance of some generally oligotrophic bacteria such those belonging to the Acidobacteria, while more copiotrophic of the phylum Proteobacteria increased with OF application. A high correlation coefficient was found when comparing RA of Acidobacteria based upon QPCR vs. sequence analysis, yet poor correlations were found for the α- and β- Proteobacteria, highlighting the caution required when interpreting these molecular data. In total, crop, fertilization scheme and plant developmental stage all influenced soil microbial community structure, but not total levels of alpha diversity.
منابع مشابه
Dynamic Response of Ammonia-Oxidizers to Four Fertilization Regimes across a Wheat-Rice Rotation System
Ammonia oxidation by microorganisms is a rate-limiting step of the nitrification process and determines the efficiency of fertilizer utilized by crops. Little is known about the dynamic response of ammonia-oxidizers to different fertilization regimes in a wheat-rice rotation system. Here, we examined ammonia-oxidizing bacteria (AOB) and archaea (AOA) communities across eight representative stag...
متن کاملResponses of Bacterial Communities in Arable Soils in a Rice-Wheat Cropping System to Different Fertilizer Regimes and Sampling Times
Soil physicochemical properties, soil microbial biomass and bacterial community structures in a rice-wheat cropping system subjected to different fertilizer regimes were investigated in two seasons (June and October). All fertilizer regimes increased the soil microbial biomass carbon and nitrogen. Both fertilizer regime and time had a significant effect on soil physicochemical properties and ba...
متن کاملResponse of leaf endophytic bacterial community to elevated CO2 at different growth stages of rice plant
Plant endophytic bacteria play an important role in plant growth and health. In the context of climate change, the response of plant endophytic bacterial communities to elevated CO2 at different rice growing stages is poorly understood. Using 454 pyrosequencing, we investigated the response of leaf endophytic bacterial communities to elevated CO2 (eCO2) at the tillering, filling, and maturity s...
متن کاملAbundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes
Flooded rice paddy soils represent a typical anaerobic freshwater habitat of microorganisms. The abundance and community structure of sulfate reducing prokaryotes (SRP) were investigated in order to understand their response to different fertilization practices in rice paddy, including control without fertilizers (CT) and arrangements of different chemical fertilizers of nitrogen (N), phosphoru...
متن کاملCompare Cadmium Accumulation Trend between Cultivated Soil and Wheat (Triticum aestivum L.) Tissue Affected Different Cropping Pattern and Growth Stage
This research was conducted to evaluate the trend of cadmium accumulation in wheat tissue and cultivated soil affected conventional cropping systems and different growth stage via split plot experiment based on randomized complete block design with three replications during 2014-2015 seasonal year. The main factor included two cropping systems (wheat-rice, fallow-wheat) and growth stage at thre...
متن کامل